<< Back To Home

--- Summaries from The Lancet Series, Global Burden of Disease Study 2010

Friday, 14th of December 2012 Print

The Lancet  

Dec 15, 2012 Volume 380 Number 9859 p2053 - 2260

http://www.thelancet.com/journals/lancet/issue/current

Comment

GBD 2010: understanding disease, injury, and risk

Richard Horton

Preview

Publication of the Global Burden of Disease Study 2010 (GBD 2010) is a landmark event for this journal and, we hope, for health. The collaboration of 486 scientists from 302 institutions in 50 countries has produced an important contribution to our understanding of present and future health priorities for countries and the global community.

From new estimates to better data

Margaret Chan

Preview

The Global Burden of Disease Study 2010 (GBD 2010) in The Lancet represents an unprecedented effort to improve global and regional estimates of levels and trends in the burden of disease. Accurate assessment of the global, regional, and country health situation and trends is critical for evidence-based decision making for public health. WHO therefore warmly welcomes GBD 2010, which was undertaken by the Institute for Health Metrics and Evaluation (IHME) with its partners and draws on the contributions of many scientists, including those who work in WHO programmes.

Data for better health-and to help end poverty

Jim Yong Kim

Preview

The World Bank Group welcomes the publication of the new Global Burden of Disease Study (GBD). The Bank commissioned the first GBD in 1990, and continues to make extensive use of this signal contribution to global health. Like its predecessors, the new, methodologically updated GBD 2010 marks a milestone in global health knowledge and our capacity for evidence-based action. It will once again set the terms of health policy, planning, and funding discussions for years to come.

GBD 2010: a multi-investigator collaboration for global comparative descriptive epidemiology

Christopher JL Murray, Majid Ezzati, Abraham D Flaxman, Stephen Lim, Rafael Lozano, Catherine Michaud, Mohsen Naghavi, Joshua A Salomon, Kenji Shibuya, Theo Vos, Alan D Lopez

Preview

The data, methods, and findings of the Global Burden of Disease Study 2010 (GBD 2010) are described in detail in The Lancet. This large collaboration is an evolution of a body of work that began with GBD 1990.1 The number of diseases, injuries, and risk factors evaluated and the geographical units of analysis have greatly expanded in the past 20 years, and change over time has been assessed. Nevertheless, GBD 2010 follows the basic principles of GBD 1990: trying to use all the relevant published and unpublished evidence; capturing fatal and non-fatal health outcomes with comparable metrics; and separating epidemiological assessment from advocacy concerns or entanglement of agendas.

GBD 2010: design, definitions, and metrics

Christopher JL Murray, Majid Ezzati, Abraham D Flaxman, Stephen Lim, Rafael Lozano, Catherine Michaud, Mohsen Naghavi, Joshua A Salomon, Kenji Shibuya, Theo Vos, Daniel Wikler, Alan D Lopez

Preview

The Global Burden of Diseases, Injuries, and Risk Factors (GBD) enterprise is a systematic, scientific effort to quantify the comparative magnitude of health loss due to diseases, injuries, and risk factors by age, sex, and geography for specific points in time. The GBD construct of the burden of disease is health loss, not income or productivity loss.1 For decision makers, health-sector leaders, researchers, and informed citizens, the GBD approach provides an opportunity to see the big picture, to compare diseases, injuries, and risk factors, and to understand in a given place, time, and age-sex group what are the most important contributors to health loss.

Articles

Age-specific and sex-specific mortality in 187 countries, 1970-2010: a systematic analysis for the Global Burden of Disease Study 2010

Haidong Wang, Laura Dwyer-Lindgren, Katherine T Lofgren, Julie Knoll Rajaratnam, Jacob R Marcus, Alison Levin-Rector, Carly E Levitz, Alan D Lopez, Christopher JL Murray

Summary

Background

Estimation of the number and rate of deaths by age and sex is a key first stage for calculation of the burden of disease in order to constrain estimates of cause-specific mortality and to measure premature mortality in populations. We aimed to estimate life tables and annual numbers of deaths for 187 countries from 1970 to 2010.

Methods

We estimated trends in under-5 mortality rate (children aged 0-4 years) and probability of adult death (15-59 years) for each country with all available data. Death registration data were available for more than 100 countries and we corrected for undercount with improved death distribution methods. We applied refined methods to survey data on sibling survival that correct for survivor, zero-sibling, and recall bias. We separately estimated mortality from natural disasters and wars. We generated final estimates of under-5 mortality and adult mortality from the data with Gaussian process regression. We used these results as input parameters in a relational model life table system. We developed a model to extrapolate mortality to 110 years of age. All death rates and numbers have been estimated with 95% uncertainty intervals (95% UIs).

Findings

From 1970 to 2010, global male life expectancy at birth increased from 56·4 years (95% UI 55·5-57·2) to 67·5 years (66·9-68·1) and global female life expectancy at birth increased from 61·2 years (60·2-62·0) to 73·3 years (72·8-73·8). Life expectancy at birth rose by 3-4 years every decade from 1970, apart from during the 1990s (increase in male life expectancy of 1·4 years and in female life expectancy of 1·6 years). Substantial reductions in mortality occurred in eastern and southern sub-Saharan Africa since 2004, coinciding with increased coverage of antiretroviral therapy and preventive measures against malaria. Sex-specific changes in life expectancy from 1970 to 2010 ranged from gains of 23-29 years in the Maldives and Bhutan to declines of 1-7 years in Belarus, Lesotho, Ukraine, and Zimbabwe. Globally, 52·8 million (95% UI 51·6-54·1 million) deaths occurred in 2010, which is about 13·5% more than occurred in 1990 (46·5 million [45·7-47·4 million]), and 21·9% more than occurred in 1970 (43·3 million [42·2-44·6 million]). Proportionally more deaths in 2010 occurred at age 70 years and older (42·8% in 2010 vs 33·1% in 1990), and 22·9% occurred at 80 years or older. Deaths in children younger than 5 years declined by almost 60% since 1970 (16·4 million [16·1-16·7 million] in 1970 vs 6·8 million [6·6-7·1 million] in 2010), especially at ages 1-59 months (10·8 million [10·4-11·1 million] in 1970 vs 4·0 million [3·8-4·2 million] in 2010). In all regions, including those most affected by HIV/AIDS, we noted increases in mean ages at death.

Interpretation

Despite global and regional health crises, global life expectancy has increased continuously and substantially in the past 40 years. Yet substantial heterogeneity exists across age groups, among countries, and over different decades. 179 of 187 countries have had increases in life expectancy after the slowdown in progress in the 1990s. Efforts should be directed to reduce mortality in low-income and middle-income countries. Potential underestimation of achievement of the Millennium Development Goal 4 might result from limitations of demographic data on child mortality for the most recent time period. Improvement of civil registration system worldwide is crucial for better tracking of global mortality.

Funding

Bill & Melinda Gates Foundation.

Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010

Rafael Lozano et al

Summary

Background

Reliable and timely information on the leading causes of death in populations, and how these are changing, is a crucial input into health policy debates. In the Global Burden of Diseases, Injuries, and Risk Factors Study 2010 (GBD 2010), we aimed to estimate annual deaths for the world and 21 regions between 1980 and 2010 for 235 causes, with uncertainty intervals (UIs), separately by age and sex.

Methods

We attempted to identify all available data on causes of death for 187 countries from 1980 to 2010 from vital registration, verbal autopsy, mortality surveillance, censuses, surveys, hospitals, police records, and mortuaries. We assessed data quality for completeness, diagnostic accuracy, missing data, stochastic variations, and probable causes of death. We applied six different modelling strategies to estimate cause-specific mortality trends depending on the strength of the data. For 133 causes and three special aggregates we used the Cause of Death Ensemble model (CODEm) approach, which uses four families of statistical models testing a large set of different models using different permutations of covariates. Model ensembles were developed from these component models. We assessed model performance with rigorous out-of-sample testing of prediction error and the validity of 95% UIs. For 13 causes with low observed numbers of deaths, we developed negative binomial models with plausible covariates. For 27 causes for which death is rare, we modelled the higher level cause in the cause hierarchy of the GBD 2010 and then allocated deaths across component causes proportionately, estimated from all available data in the database. For selected causes (African trypanosomiasis, congenital syphilis, whooping cough, measles, typhoid and parathyroid, leishmaniasis, acute hepatitis E, and HIV/AIDS), we used natural history models based on information on incidence, prevalence, and case-fatality. We separately estimated cause fractions by aetiology for diarrhoea, lower respiratory infections, and meningitis, as well as disaggregations by subcause for chronic kidney disease, maternal disorders, cirrhosis, and liver cancer. For deaths due to collective violence and natural disasters, we used mortality shock regressions. For every cause, we estimated 95% UIs that captured both parameter estimation uncertainty and uncertainty due to model specification where CODEm was used. We constrained cause-specific fractions within every age-sex group to sum to total mortality based on draws from the uncertainty distributions.

Findings

In 2010, there were 52·8 million deaths globally. At the most aggregate level, communicable, maternal, neonatal, and nutritional causes were 24·9% of deaths worldwide in 2010, down from 15·9 million (34·1%) of 46·5 million in 1990. This decrease was largely due to decreases in mortality from diarrhoeal disease (from 2·5 to 1·4 million), lower respiratory infections (from 3·4 to 2·8 million), neonatal disorders (from 3·1 to 2·2 million), measles (from 0·63 to 0·13 million), and tetanus (from 0·27 to 0·06 million). Deaths from HIV/AIDS increased from 0·30 million in 1990 to 1·5 million in 2010, reaching a peak of 1·7 million in 2006. Malaria mortality also rose by an estimated 19·9% since 1990 to 1·17 million deaths in 2010. Tuberculosis killed 1·2 million people in 2010. Deaths from non-communicable diseases rose by just under 8 million between 1990 and 2010, accounting for two of every three deaths (34·5 million) worldwide by 2010. 8 million people died from cancer in 2010, 38% more than two decades ago; of these, 1·5 million (19%) were from trachea, bronchus, and lung cancer. Ischaemic heart disease and stroke collectively killed 12·9 million people in 2010, or one in four deaths worldwide, compared with one in five in 1990; 1·3 million deaths were due to diabetes, twice as many as in 1990. The fraction of global deaths due to injuries (5·1 million deaths) was marginally higher in 2010 (9·6%) compared with two decades earlier (8·8%). This was driven by a 46% rise in deaths worldwide due to road traffic accidents (1·3 million in 2010) and a rise in deaths from falls. Ischaemic heart disease, stroke, chronic obstructive pulmonary disease (COPD), lower respiratory infections, lung cancer, and HIV/AIDS were the leading causes of death in 2010. Ischaemic heart disease, lower respiratory infections, stroke, diarrhoeal disease, malaria, and HIV/AIDS were the leading causes of years of life lost due to premature mortality (YLLs) in 2010, similar to what was estimated for 1990, except for HIV/AIDS and preterm birth complications. YLLs from lower respiratory infections and diarrhoea decreased by 45-54% since 1990; ischaemic heart disease and stroke YLLs increased by 17-28%. Regional variations in leading causes of death were substantial. Communicable, maternal, neonatal, and nutritional causes still accounted for 76% of premature mortality in sub-Saharan Africa in 2010. Age standardised death rates from some key disorders rose (HIV/AIDS, Alzheimer's disease, diabetes mellitus, and chronic kidney disease in particular), but for most diseases, death rates fell in the past two decades; including major vascular diseases, COPD, most forms of cancer, liver cirrhosis, and maternal disorders. For other conditions, notably malaria, prostate cancer, and injuries, little change was noted.

Interpretation

Population growth, increased average age of the world's population, and largely decreasing age-specific, sex-specific, and cause-specific death rates combine to drive a broad shift from communicable, maternal, neonatal, and nutritional causes towards non-communicable diseases. Nevertheless, communicable, maternal, neonatal, and nutritional causes remain the dominant causes of YLLs in sub-Saharan Africa. Overlaid on this general pattern of the epidemiological transition, marked regional variation exists in many causes, such as interpersonal violence, suicide, liver cancer, diabetes, cirrhosis, Chagas disease, African trypanosomiasis, melanoma, and others. Regional heterogeneity highlights the importance of sound epidemiological assessments of the causes of death on a regular basis.

Funding

Bill & Melinda Gates Foundation.

Common values in assessing health outcomes from disease and injury: disability weights measurement study for the Global Burden of Disease Study 2010

Joshua A Salomon et al

Summary

Background

Measurement of the global burden of disease with disability-adjusted life-years (DALYs) requires disability weights that quantify health losses for all non-fatal consequences of disease and injury. There has been extensive debate about a range of conceptual and methodological issues concerning the definition and measurement of these weights. Our primary objective was a comprehensive re-estimation of disability weights for the Global Burden of Disease Study 2010 through a large-scale empirical investigation in which judgments about health losses associated with many causes of disease and injury were elicited from the general public in diverse communities through a new, standardised approach.

Methods

We surveyed respondents in two ways: household surveys of adults aged 18 years or older (face-to-face interviews in Bangladesh, Indonesia, Peru, and Tanzania; telephone interviews in the USA) between Oct 28, 2009, and June 23, 2010; and an open-access web-based survey between July 26, 2010, and May 16, 2011. The surveys used paired comparison questions, in which respondents considered two hypothetical individuals with different, randomly selected health states and indicated which person they regarded as healthier. The web survey added questions about population health equivalence, which compared the overall health benefits of different life-saving or disease-prevention programmes. We analysed paired comparison responses with probit regression analysis on all 220 unique states in the study. We used results from the population health equivalence responses to anchor the results from the paired comparisons on the disability weight scale from 0 (implying no loss of health) to 1 (implying a health loss equivalent to death). Additionally, we compared new disability weights with those used in WHO's most recent update of the Global Burden of Disease Study for 2004.

Findings

13 902 individuals participated in household surveys and 16 328 in the web survey. Analysis of paired comparison responses indicated a high degree of consistency across surveys: correlations between individual survey results and results from analysis of the pooled dataset were 0·9 or higher in all surveys except in Bangladesh (r=0·75). Most of the 220 disability weights were located on the mild end of the severity scale, with 58 (26%) having weights below 0·05. Five (11%) states had weights below 0·01, such as mild anaemia, mild hearing or vision loss, and secondary infertility. The health states with the highest disability weights were acute schizophrenia (0·76) and severe multiple sclerosis (0·71). We identified a broad pattern of agreement between the old and new weights (r=0·70), particularly in the moderate-to-severe range. However, in the mild range below 0·2, many states had significantly lower weights in our study than previously.

Interpretation

This study represents the most extensive empirical effort as yet to measure disability weights. By contrast with the popular hypothesis that disability assessments vary widely across samples with different cultural environments, we have reported strong evidence of highly consistent results.

Funding

Bill & Melinda Gates Foundation.

Healthy life expectancy for 187 countries, 1990-2010: a systematic analysis for the Global Burden Disease Study 2010

Joshua A Salomon, Haidong Wang, Michael K Freeman, Theo Vos, Abraham D Flaxman, Alan D Lopez, Christopher JL Murray

Summary

Background

Healthy life expectancy (HALE) summarises mortality and non-fatal outcomes in a single measure of average population health. It has been used to compare health between countries, or to measure changes over time. These comparisons can inform policy questions that depend on how morbidity changes as mortality decreases. We characterise current HALE and changes over the past two decades in 187 countries.

Methods

Using inputs from the Global Burden of Disease Study (GBD) 2010, we assessed HALE for 1990 and 2010. We calculated HALE with life table methods, incorporating estimates of average health over each age interval. Inputs from GBD 2010 included age-specific information for mortality rates and prevalence of 1160 sequelae, and disability weights associated with 220 distinct health states relating to these sequelae. We computed estimates of average overall health for each age group, adjusting for comorbidity with a Monte Carlo simulation method to capture how multiple morbidities can combine in an individual. We incorporated these estimates in the life table by the Sullivan method to produce HALE estimates for each population defined by sex, country, and year. We estimated the contributions of changes in child mortality, adult mortality, and disability to overall change in population health between 1990 and 2010.

Findings

In 2010, global male HALE at birth was 58·3 years (uncertainty interval 56·7-59·8) and global female HALE at birth was 61·8 years (60·1-63·4). HALE increased more slowly than did life expectancy over the past 20 years, with each 1-year increase in life expectancy at birth associated with a 0·8-year increase in HALE. Across countries in 2010, male HALE at birth ranged from 27·9 years (17·3-36·5) in Haiti, to 68·8 years (67·0-70·4) in Japan. Female HALE at birth ranged from 37·1 years (26·9-43·7) in Haiti, to 71·7 years (69·7-73·4) in Japan. Between 1990 and 2010, male HALE increased by 5 years or more in 42 countries compared with 37 countries for female HALE, while male HALE decreased in 21 countries and 11 for female HALE. Between countries and over time, life expectancy was strongly and positively related to number of years lost to disability. This relation was consistent between sexes, in cross-sectional and longitudinal analysis, and when assessed at birth, or at age 50 years. Changes in disability had small effects on changes in HALE compared with changes in mortality.

Interpretation

HALE differs substantially between countries. As life expectancy has increased, the number of healthy years lost to disability has also increased in most countries, consistent with the expansion of morbidity hypothesis, which has implications for health planning and health-care expenditure. Compared with substantial progress in reduction of mortality over the past two decades, relatively little progress has been made in reduction of the overall effect of non-fatal disease and injury on population health. HALE is an attractive indicator for monitoring health post-2015.

Funding

The Bill & Melinda Gates Foundation

Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010

Theo Vos et al

Summary

Background

Non-fatal health outcomes from diseases and injuries are a crucial consideration in the promotion and monitoring of individual and population health. The Global Burden of Disease (GBD) studies done in 1990 and 2000 have been the only studies to quantify non-fatal health outcomes across an exhaustive set of disorders at the global and regional level. Neither effort quantified uncertainty in prevalence or years lived with disability (YLDs).

Methods

Of the 291 diseases and injuries in the GBD cause list, 289 cause disability. For 1160 sequelae of the 289 diseases and injuries, we undertook a systematic analysis of prevalence, incidence, remission, duration, and excess mortality. Sources included published studies, case notification, population-based cancer registries, other disease registries, antenatal clinic serosurveillance, hospital discharge data, ambulatory care data, household surveys, other surveys, and cohort studies. For most sequelae, we used a Bayesian meta-regression method, DisMod-MR, designed to address key limitations in descriptive epidemiological data, including missing data, inconsistency, and large methodological variation between data sources. For some disorders, we used natural history models, geospatial models, back-calculation models (models calculating incidence from population mortality rates and case fatality), or registration completeness models (models adjusting for incomplete registration with health-system access and other covariates). Disability weights for 220 unique health states were used to capture the severity of health loss. YLDs by cause at age, sex, country, and year levels were adjusted for comorbidity with simulation methods. We included uncertainty estimates at all stages of the analysis.

Findings

Global prevalence for all ages combined in 2010 across the 1160 sequelae ranged from fewer than one case per 1 million people to 350 000 cases per 1 million people. Prevalence and severity of health loss were weakly correlated (correlation coefficient −0·37). In 2010, there were 777 million YLDs from all causes, up from 583 million in 1990. The main contributors to global YLDs were mental and behavioural disorders, musculoskeletal disorders, and diabetes or endocrine diseases. The leading specific causes of YLDs were much the same in 2010 as they were in 1990: low back pain, major depressive disorder, iron-deficiency anaemia, neck pain, chronic obstructive pulmonary disease, anxiety disorders, migraine, diabetes, and falls. Age-specific prevalence of YLDs increased with age in all regions and has decreased slightly from 1990 to 2010. Regional patterns of the leading causes of YLDs were more similar compared with years of life lost due to premature mortality. Neglected tropical diseases, HIV/AIDS, tuberculosis, malaria, and anaemia were important causes of YLDs in sub-Saharan Africa.

Interpretation

Rates of YLDs per 100 000 people have remained largely constant over time but rise steadily with age. Population growth and ageing have increased YLD numbers and crude rates over the past two decades. Prevalences of the most common causes of YLDs, such as mental and behavioural disorders and musculoskeletal disorders, have not decreased. Health systems will need to address the needs of the rising numbers of individuals with a range of disorders that largely cause disability but not mortality. Quantification of the burden of non-fatal health outcomes will be crucial to understand how well health systems are responding to these challenges. Effective and affordable strategies to deal with this rising burden are an urgent priority for health systems in most parts of the world.

Funding

Bill & Melinda Gates Foundation.

Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010

Christopher J L Murray et al

Summary

Background

Measuring disease and injury burden in populations requires a composite metric that captures both premature mortality and the prevalence and severity of ill-health. The 1990 Global Burden of Disease study proposed disability-adjusted life years (DALYs) to measure disease burden. No comprehensive update of disease burden worldwide incorporating a systematic reassessment of disease and injury-specific epidemiology has been done since the 1990 study. We aimed to calculate disease burden worldwide and for 21 regions for 1990, 2005, and 2010 with methods to enable meaningful comparisons over time.

Methods

We calculated DALYs as the sum of years of life lost (YLLs) and years lived with disability (YLDs). DALYs were calculated for 291 causes, 20 age groups, both sexes, and for 187 countries, and aggregated to regional and global estimates of disease burden for three points in time with strictly comparable definitions and methods. YLLs were calculated from age-sex-country-time-specific estimates of mortality by cause, with death by standardised lost life expectancy at each age. YLDs were calculated as prevalence of 1160 disabling sequelae, by age, sex, and cause, and weighted by new disability weights for each health state. Neither YLLs nor YLDs were age-weighted or discounted. Uncertainty around cause-specific DALYs was calculated incorporating uncertainty in levels of all-cause mortality, cause-specific mortality, prevalence, and disability weights.

Findings

Global DALYs remained stable from 1990 (2·503 billion) to 2010 (2·490 billion). Crude DALYs per 1000 decreased by 23% (472 per 1000 to 361 per 1000). An important shift has occurred in DALY composition with the contribution of deaths and disability among children (younger than 5 years of age) declining from 41% of global DALYs in 1990 to 25% in 2010. YLLs typically account for about half of disease burden in more developed regions (high-income Asia Pacific, western Europe, high-income North America, and Australasia), rising to over 80% of DALYs in sub-Saharan Africa. In 1990, 47% of DALYs worldwide were from communicable, maternal, neonatal, and nutritional disorders, 43% from non-communicable diseases, and 10% from injuries. By 2010, this had shifted to 35%, 54%, and 11%, respectively. Ischaemic heart disease was the leading cause of DALYs worldwide in 2010 (up from fourth rank in 1990, increasing by 29%), followed by lower respiratory infections (top rank in 1990; 44% decline in DALYs), stroke (fifth in 1990; 19% increase), diarrhoeal diseases (second in 1990; 51% decrease), and HIV/AIDS (33rd in 1990; 351% increase). Major depressive disorder increased from 15th to 11th rank (37% increase) and road injury from 12th to 10th rank (34% increase). Substantial heterogeneity exists in rankings of leading causes of disease burden among regions.

Interpretation

Global disease burden has continued to shift away from communicable to non-communicable diseases and from premature death to years lived with disability. In sub-Saharan Africa, however, many communicable, maternal, neonatal, and nutritional disorders remain the dominant causes of disease burden. The rising burden from mental and behavioural disorders, musculoskeletal disorders, and diabetes will impose new challenges on health systems. Regional heterogeneity highlights the importance of understanding local burden of disease and setting goals and targets for the post-2015 agenda taking such patterns into account. Because of improved definitions, methods, and data, these results for 1990 and 2010 supersede all previously published Global Burden of Disease results.

Funding

Bill & Melinda Gates Foundation.

A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010

Stephen S Lim et al

Summary

Background

Quantification of the disease burden caused by different risks informs prevention by providing an account of health loss different to that provided by a disease-by-disease analysis. No complete revision of global disease burden caused by risk factors has been done since a comparative risk assessment in 2000, and no previous analysis has assessed changes in burden attributable to risk factors over time.

Methods

We estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010. We estimated exposure distributions for each year, region, sex, and age group, and relative risks per unit of exposure by systematically reviewing and synthesising published and unpublished data. We used these estimates, together with estimates of cause-specific deaths and DALYs from the Global Burden of Disease Study 2010, to calculate the burden attributable to each risk factor exposure compared with the theoretical-minimum-risk exposure. We incorporated uncertainty in disease burden, relative risks, and exposures into our estimates of attributable burden.

Findings

In 2010, the three leading risk factors for global disease burden were high blood pressure (7·0% [95% uncertainty interval 6·2-7·7] of global DALYs), tobacco smoking including second-hand smoke (6·3% [5·5-7·0]), and alcohol use (5·5% [5·0-5·9]). In 1990, the leading risks were childhood underweight (7·9% [6·8-9·4]), household air pollution from solid fuels (HAP; 7·0% [5·6-8·3]), and tobacco smoking including second-hand smoke (6·1% [5·4-6·8]). Dietary risk factors and physical inactivity collectively accounted for 10·0% (95% UI 9·2-10·8) of global DALYs in 2010, with the most prominent dietary risks being diets low in fruits and those high in sodium. Several risks that primarily affect childhood communicable diseases, including unimproved water and sanitation and childhood micronutrient deficiencies, fell in rank between 1990 and 2010, with unimproved water and sanitation accounting for 0·9% (0·4-1·6) of global DALYs in 2010. However, in most of sub-Saharan Africa childhood underweight, HAP, and non-exclusive and discontinued breastfeeding were the leading risks in 2010, while HAP was the leading risk in south Asia. The leading risk factor in Eastern Europe, most of Latin America, and southern sub-Saharan Africa in 2010 was alcohol use; in most of Asia, North Africa and Middle East, and central Europe it was high blood pressure. Despite declines, tobacco smoking including second-hand smoke remained the leading risk in high-income north America and western Europe. High body-mass index has increased globally and it is the leading risk in Australasia and southern Latin America, and also ranks high in other high-income regions, North Africa and Middle East, and Oceania.

Interpretation

Worldwide, the contribution of different risk factors to disease burden has changed substantially, with a shift away from risks for communicable diseases in children towards those for non-communicable diseases in adults. These changes are related to the ageing population, decreased mortality among children younger than 5 years, changes in cause-of-death composition, and changes in risk factor exposures. New evidence has led to changes in the magnitude of key risks including unimproved water and sanitation, vitamin A and zinc deficiencies, and ambient particulate matter pollution. The extent to which the epidemiological shift has occurred and what the leading risks currently are varies greatly across regions. In much of sub-Saharan Africa, the leading risks are still those associated with poverty and those that affect children.

Funding

Bill & Melinda Gates Foundation.

41058796