<< Back To Home

NEW THIS MONDAY: CHILD MORTALITY ESTIMATION: APPROPRIATE TIME PERIODS FOR CHILD MORTALITY ESTIMATES FROM FULL BIRTH HISTORIES

Sunday, 30th of June 2013 Print

 

  • CHILD MORTALITY ESTIMATION: APPROPRIATE TIME PERIODS FOR CHILD MORTALITY ESTIMATES FROM FULL BIRTH HISTORIES

Abstract and editors summary below; full text is at http://www.ploscollections.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001289;jsessionid=F2DDF3E25ECC5F9C8CCB70221CC99417

Background

Child mortality estimates from complete birth histories from Demographic and Health Surveys (DHS) surveys and similar surveys are a chief source of data used to track Millennium Development Goal 4, which aims for a reduction of under-five mortality by two-thirds between 1990 and 2015. Based on the expected sample sizes when the DHS program commenced, the estimates are usually based on 5-y time periods. Recent surveys have had larger sample sizes than early surveys, and here we aimed to explore the benefits of using shorter time periods than 5 y for estimation. We also explore the benefit of changing the estimation procedure from being based on years before the survey, i.e., measured with reference to the date of the interview for each woman, to being based on calendar years.

Methods and Findings

Jackknife variance estimation was used to calculate standard errors for 207 DHS surveys in order to explore to what extent the large samples in recent surveys can be used to produce estimates based on 1-, 2-, 3-, 4-, and 5-y periods. We also recalculated the estimates for the surveys into calendar-year-based estimates. We demonstrate that estimation for 1-y periods is indeed possible for many recent surveys.

Conclusions

The reduction in bias achieved using 1-y periods and calendar-year-based estimation is worthwhile in some cases. In particular, it allows tracking of the effects of particular events such as droughts, epidemics, or conflict on child mortality in a way not possible with previous estimation procedures. Recommendations to use estimation for short time periods when possible and to use calendar-year-based estimation were adopted in the United Nations 2011 estimates of child mortality.

Editors Summary

Background

In 2000, world leaders set, as Millennium Development Goal 4 (MDG 4), a target of reducing global under-five mortality (the number of children who die before their fifth birthday to a third of its 1990 level (12 million deaths per year) by 2015. (The MDGs are designed to alleviate extreme poverty by 2015.) To track progress towards MDG 4, the under-five mortality rate (also shown as 5q0) needs to be estimated both “precisely” and “accurately.” A “precise” estimate has a small random error (a quality indicated by a statistical measurement called the coefficient of variance), and an “accurate” estimate is one that is close to the true value because it lacks bias (systematic errors). In an ideal world, under-five mortality estimates would be based on official records of births and deaths. However, developing countries, which are where most under-five deaths occur, rarely have such records, and under-five mortality estimation relies on “complete birth histories” provided by women via surveys. These are collected by Demographic and Health Surveys (DHS, a project that helps developing countries collect data on health and population trends) and record all the births that a surveyed woman has had and the age at death of any of her children who have died.

Why Was This Study Done?

Because the DHS originally surveyed samples of 5,000–6,000 women, estimates of under-five mortality are traditionally calculated using data from five-year time periods. Over shorter periods with this sample size, the random errors in under-five mortality estimates become unacceptably large. Nowadays, the average DHS survey sample size is more than 10,000 women, so it should be possible to estimate under-five mortality over shorter time periods. Such estimates should be able to track the effects on under-five mortality of events such as droughts and conflicts better than estimates made over five years. In this study, the researchers determine appropriate time periods for child mortality estimates based on full birth histories, given different sample sizes. Specifically, they ask whether, with the bigger sample sizes that are now available, details about trends in under-five mortality rates are being missed by using the estimation procedures that were developed for smaller samples. They also ask whether calendar-year-based estimates can be calculated; mortality is usually estimated in “years before the survey,” a process that blurs the reference period for the estimate.

What Did the Researchers Do and Find?

The researchers used a statistical method called “jackknife variance estimation” to determine coefficients of variance for child mortality estimates calculated over different time periods using complete birth histories from 207 DHS surveys. Regardless of the estimation period, half of the estimates had a coefficient of variance of less than 10%, a level of random variation that is generally considered acceptable. However, within each time period, some estimates had very high coefficients of variance. These estimates were derived from surveys where there was a small sample size, low fertility (the women surveyed had relatively few babies), or low child mortality. Other analyses show that although the five-year period estimates had lower standard errors than the one-year period estimates, the latter were affected less by bias than the five-year period estimates. Finally, estimates fixed to calendar years rather than to years before the survey were more directly comparable across surveys and brought out variations in child mortality caused by specific events such as conflicts more clearly.

What Do These Findings Mean?

These findings show that although under-five mortality rate estimates based on five-year periods of data have been the norm, the sample sizes currently employed in DHS surveys make it feasible to estimate mortality for shorter periods. The findings also show that using shorter periods of data in estimations of the under-five mortality rate, and using calendar-year-based estimation, reduces bias (makes the estimations more accurate) and allows the effects of events such as droughts, epidemics, or conflict on under-five mortality rates to be tracked in a way that is impossible when using five-year periods of data. Given these findings, the researchers recommend that time periods shorter than five years should be adopted for the estimation of under-five mortality and that estimations should be pegged to calendar years rather than to years before the survey. Both recommendations have already been adopted by the United Nations Inter-agency Group for Child Mortality Estimation (IGME) and were used in their 2011 analysis of under-five mortality.

Additional Information

Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1​001289.

This paper is part of a collection of papers on Child Mortality Estimation Methods published in PLOS Medicine

The United Nations Childrens Fund (UNICEF) works for childrens rights, survival, development, and protection around the world; it provides information on Millennium Development Goal 4, and its Childinfo website provides detailed statistics about child survival and health, including a description of the United Nations Inter-agency Group for Child Mortality Estimation; the 2011 IGME report on Levels and Trends in Child Mortality is available

The World Health Organization also has information about Millennium Development Goal 4 and provides estimates of child mortality rates (some information in several languages)

Further information about the Millennium Development Goals is available

Information is also available about Demographic and Health Surveys of infant and child mortality

Citation: Pedersen J, Liu J (2012) Child Mortality Estimation: Appropriate Time Periods for Child Mortality Estimates from Full Birth Histories. PLoS Med 9(8): e1001289. doi:10.1371/journal.pmed.1001289

Academic Editor: Peter Byass, Umeå Centre for Global Health Research, Umeå University, Sweden

Received: November 8, 2011; Accepted: June 11, 2012; Published: August 28, 2012

Copyright: © Pedersen, Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The funding for this paper originated from UNICEF through a grant from Stanton-Hill Research. The funders had no role in study design, data collection and analysis, or preparation of the manuscript. However, UNICEF did participate in the decision to publish the paper as part of the TAG/IGME collection on child mortality estimation.

Competing interests: The authors have declared the following competing interests: Stanton-Hill Research supported this study. Kenneth Hill of Stanton-Hill Research is also the chair of the Technical Advisory Group (TAG) to the UN Inter Agency group of Child Mortality Estimation. There are no patents, products in development or marketed products to declare. This does not alter our adherence to all the PLOS Medicine policies on sharing data and materials, as detailed online in the guide for authors.

Abbreviations: 5q0, under-five mortality rate; DHS, Demographic and Health Surveys; PSU, primary sampling unit

Provenance: Submitted as part of a sponsored Collection; externally reviewed.

41252736